Critical Values of Chi-square


Upper critical values of chi-square distribution with x degrees of freedom

Probability of exceeding the critical value:

df

90%

95%

97.5%

99%

99.9%

⇐ Confidence Level

0.10

0.05

0.025

0.01

0.001

⇐ Significance Level

1

2.706

3.841

5.024

6.635

10.828

2

4.605

5.991

7.378

9.210

13.816

3

6.251

7.815

9.348

11.345

16.266

4

7.779

9.488

11.143

13.277

18.467

5

9.236

11.070

12.833

15.086

20.515

6

10.645

12.592

14.449

16.812

22.458

7

12.017

14.067

16.013

18.475

24.322

8

13.362

15.507

17.535

20.090

26.125

9

14.684

16.919

19.023

21.666

27.877

10

15.987

18.307

20.483

23.209

29.588

11

17.275

19.675

21.920

24.725

31.264

12

18.549

21.026

23.337

26.217

32.910

13

19.812

22.362

24.736

27.688

34.528

14

21.064

23.685

26.119

29.141

36.123

15

22.307

24.996

27.488

30.578

37.697

16

23.542

26.296

28.845

32.000

39.252

17

24.769

27.587

30.191

33.409

40.790

18

25.989

28.869

31.526

34.805

42.312

19

27.204

30.144

32.852

36.191

43.820

20

28.412

31.410

34.170

37.566

45.315

21

29.615

32.671

35.479

38.932

46.797

22

30.813

33.924

36.781

40.289

48.268

23

32.007

35.172

38.076

41.638

49.728

24

33.196

36.415

39.364

42.980

51.179

25

34.382

37.652

40.646

44.314

52.620

26

35.563

38.885

41.923

45.642

54.052

27

36.741

40.113

43.195

46.963

55.476

28

37.916

41.337

44.461

48.278

56.892

29

39.087

42.557

45.722

49.588

58.301

30

40.256

43.773

46.979

50.892

59.703

31

41.422

44.985

48.232

52.191

61.098

32

42.585

46.194

49.480

53.486

62.487

33

43.745

47.400

50.725

54.776

63.870

34

44.903

48.602

51.966

56.061

65.247

35

46.059

49.802

53.203

57.342

66.619

36

47.212

50.998

54.437

58.619

67.985

37

48.363

52.192

55.668

59.893

69.347

38

49.513

53.384

56.896

61.162

70.703

39

50.660

54.572

58.120

62.428

72.055

40

51.805

55.758

59.342

63.691

73.402

41

52.949

56.942

60.561

64.950

74.745

42

54.090

58.124

61.777

66.206

76.084

43

55.230

59.304

62.990

67.459

77.419

44

56.369

60.481

64.201

68.710

78.750

45

57.505

61.656

65.410

69.957

80.077

46

58.641

62.830

66.617

71.201

81.400

47

59.774

64.001

67.821

72.443

82.720

48

60.907

65.171

69.023

73.683

84.037

49

62.038

66.339

70.222

74.919

85.351

50

63.167

67.505

71.420

76.154

86.661

51

64.295

68.669

72.616

77.386

87.968

52

65.422

69.832

73.810

78.616

89.272

53

66.548

70.993

75.002

79.843

90.573

54

67.673

72.153

76.192

81.069

91.872

55

68.796

73.311

77.380

82.292

93.168

56

69.919

74.468

78.567

83.513

94.461

57

71.040

75.624

79.752

84.733

95.751

58

72.160

76.778

80.936

85.950

97.039

59

73.279

77.931

82.117

87.166

98.324

60

74.397

79.082

83.298

88.379

99.607

61

75.514

80.232

84.476

89.591

100.888

62

76.630

81.381

85.654

90.802

102.166

63

77.745

82.529

86.830

92.010

103.442

64

78.860

83.675

88.004

93.217

104.716

65

79.973

84.821

89.177

94.422

105.988

66

81.085

85.965

90.349

95.626

107.258

67

82.197

87.108

91.519

96.828

108.526

68

83.308

88.250

92.689

98.028

109.791

69

84.418

89.391

93.856

99.228

111.055

70

85.527

90.531

95.023

100.425

112.317

71

86.635

91.670

96.189

101.621

113.577

72

87.743

92.808

97.353

102.816

114.835

73

88.850

93.945

98.516

104.010

116.092

74

89.956

95.081

99.678

105.202

117.346

75

91.061

96.217

100.839

106.393

118.599

76

92.166

97.351

101.999

107.583

119.850

77

93.270

98.484

103.158

108.771

121.100

78

94.374

99.617

104.316

109.958

122.348

79

95.476

100.749

105.473

111.144

123.594

80

96.578

101.879

106.629

112.329

124.839

81

97.680

103.010

107.783

113.512

126.083

82

98.780

104.139

108.937

114.695

127.324

83

99.880

105.267

110.090

115.876

128.565

84

100.980

106.395

111.242

117.057

129.804

85

102.079

107.522

112.393

118.236

131.041

86

103.177

108.648

113.544

119.414

132.277

87

104.275

109.773

114.693

120.591

133.512

88

105.372

110.898

115.841

121.767

134.746

89

106.469

112.022

116.989

122.942

135.978

90

107.565

113.145

118.136

124.116

137.208

91

108.661

114.268

119.282

125.289

138.438

92

109.756

115.390

120.427

126.462

139.666

93

110.850

116.511

121.571

127.633

140.893

94

111.944

117.632

122.715

128.803

142.119

95

113.038

118.752

123.858

129.973

143.344

96

114.131

119.871

125.000

131.141

144.567

97

115.223

120.990

126.141

132.309

145.789

98

116.315

122.108

127.282

133.476

147.010

99

117.407

123.225

128.422

134.642

148.230

100

118.498

124.342

129.561

135.807

149.449

100

118.498

124.342

129.561

135.807

149.449

Lower critical values of chi-square distribution with X degrees freedom

Probability of exceeding the critical value:

0.90 0.95 0.975 0.99 0.999
1. . 016 . 004 . 001 . 000 . 000
2. . 211 . 103 . 051 . 020 . 002
3. . 584 . 352 . 216 . 115 . 024
4. 1 .064 . 711 . 484 . 297 . 091
5. 1 .610 1 .145 . 831 . 554 . 210
6. 2 .204 1 .635 1 .237 . 872 . 381
7. 2 .833 2 .167 1 .690 1 .239 . 598
8. 3 .490 2 .733 2 .180 1 .646 . 857
9. 4 .168 3 .325 2 .700 2 .088 1 .152
10. 4 .865 3 .940 3 .247 2 .558 1 .479
11. 5 .578 4 .575 3 .816 3 .053 1 .834
12. 6 .304 5 .226 4 .404 3 .571 2 .214
13. 7 .042 5 .892 5 .009 4 .107 2 .617
14. 7 .790 6 .571 5 .629 4 .660 3 .041
15. 8 .547 7 .261 6 .262 5 .229 3 .483
16. 9 .312 7 .962 6 .908 5 .812 3 .942
17. 1 0.085 8 .672 7 .564 6 .408 4 .416
18. 1 0.865 9 .390 8 .231 7 .015 4 .905
19. 1 1.651 1 0.117 8 .907 7 .633 5 .407
20. 1 2.443 1 0.851 9 .591 8 .260 5 .921
21. 1 3.240 1 1.591 1 0.283 8 .897 6 .447
22. 1 4.041 1 2.338 1 0.982 9 .542 6 .983
23. 1 4.848 1 3.091 1 1.689 1 0.196 7 .529
24. 1 5.659 1 3.848 1 2.401 1 0.856 8 .085
25. 1 6.473 1 4.611 1 3.120 1 1.524 8 .649
26. 1 7.292 1 5.379 1 3.844 1 2.198 9 .222
27. 1 8.114 1 6.151 1 4.573 1 2.879 9 .803
28. 1 8.939 1 6.928 1 5.308 1 3.565 1 0.391
29. 1 9.768 1 7.708 1 6.047 1 4.256 1 0.986
30. 2 0.599 1 8.493 1 6.791 1 4.953 1 1.588
31. 2 1.434 1 9.281 1 7.539 1 5.655 1 2.196
32. 2 2.271 2 0.072 1 8.291 1 6.362 1 2.811
33. 2 3.110 2 0.867 1 9.047 1 7.074 1 3.431
34. 2 3.952 2 1.664 1 9.806 1 7.789 1 4.057
35. 2 4.797 2 2.465 2 0.569 1 8.509 1 4.688
36. 2 5.643 2 3.269 2 1.336 1 9.233 1 5.324
37. 2 6.492 2 4.075 2 2.106 1 9.960 1 5.965
38. 2 7.343 2 4.884 2 2.878 2 0.691 1 6.611
39. 2 8.196 2 5.695 2 3.654 2 1.426 1 7.262
40. 2 9.051 2 6.509 2 4.433 2 2.164 1 7.916
41. 2 9.907 2 7.326 2 5.215 2 2.906 1 8.575
42. 3 0.765 2 8.144 2 5.999 2 3.650 1 9.239
43. 3 1.625 2 8.965 2 6.785 2 4.398 1 9.906
44. 3 2.487 2 9.787 2 7.575 2 5.148 2 0.576
45. 3 3.350 3 0.612 2 8.366 2 5.901 2 1.251
46. 3 4.215 3 1.439 2 9.160 2 6.657 2 1.929
47. 3 5.081 3 2.268 2 9.956 2 7.416 2 2.610
48. 3 5.949 3 3.098 3 0.755 2 8.177 2 3.295
49. 3 6.818 3 3.930 3 1.555 2 8.941 2 3.983
50. 3 7.689 3 4.764 3 2.357 2 9.707 2 4.674
51. 3 8.560 3 5.600 3 3.162 3 0.475 2 5.368
52. 3 9.433 3 6.437 3 3.968 3 1.246 2 6.065
53. 4 0.308 3 7.276 3 4.776 3 2.018 2 6.765
54. 4 1.183 3 8.116 3 5.586 3 2.793 2 7.468
55. 4 2.060 3 8.958 3 6.398 3 3.570 2 8.173
56. 4 2.937 3 9.801 3 7.212 3 4.350 2 8.881
57. 4 3.816 4 0.646 3 8.027 3 5.131 2 9.592
58. 4 4.696 4 1.492 3 8.844 3 5.913 3 0.305
59. 4 5.577 4 2.339 3 9.662 3 6.698 3 1.020
60. 4 6.459 4 3.188 4 0.482 3 7.485 3 1.738
61. 4 7.342 4 4.038 4 1.303 3 8.273 3 2.459
62. 4 8.226 4 4.889 4 2.126 3 9.063 3 3.181
63. 4 9.111 4 5.741 4 2.950 3 9.855 3 3.906
64. 4 9.996 4 6.595 4 3.776 4 0.649 3 4.633
65. 5 0.883 4 7.450 4 4.603 4 1.444 3 5.362
66. 5 1.770 4 8.305 4 5.431 4 2.240 3 6.093
67. 5 2.659 4 9.162 4 6.261 4 3.038 3 6.826
68. 5 3.548 5 0.020 4 7.092 4 3.838 3 7.561
69. 5 4.438 5 0.879 4 7.924 4 4.639 3 8.298
70. 5 5.329 5 1.739 4 8.758 4 5.442 3 9.036
71. 5 6.221 5 2.600 4 9.592 4 6.246 3 9.777
72. 5 7.113 5 3.462 5 0.428 4 7.051 4 0.519
73. 5 8.006 5 4.325 5 1.265 4 7.858 4 1.264
74. 5 8.900 5 5.189 5 2.103 4 8.666 4 2.010
75. 5 9.795 5 6.054 5 2.942 4 9.475 4 2.757
76. 6 0.690 5 6.920 5 3.782 5 0.286 4 3.507
77. 6 1.586 5 7.786 5 4.623 5 1.097 4 4.258
78. 6 2.483 5 8.654 5 5.466 5 1.910 4 5.010
79. 6 3.380 5 9.522 5 6.309 5 2.725 4 5.764
80. 6 4.278 6 0.391 5 7.153 5 3.540 4 6.520
81. 6 5.176 6 1.261 5 7.998 5 4.357 4 7.277
82. 6 6.076 6 2.132 5 8.845 5 5.174 4 8.036
83. 6 6.976 6 3.004 5 9.692 5 5.993 4 8.796
84. 6 7.876 6 3.876 6 0.540 5 6.813 4 9.557
85. 6 8.777 6 4.749 6 1.389 5 7.634 5 0.320
86. 6 9.679 6 5.623 6 2.239 5 8.456 5 1.085
87. 7 0.581 6 6.498 6 3.089 5 9.279 5 1.850
88. 7 1.484 6 7.373 6 3.941 6 0.103 5 2.617
89. 7 2.387 6 8.249 6 4.793 6 0.928 5 3.386
90. 7 3.291 6 9.126 6 5.647 6 1.754 5 4.155
91. 7 4.196 7 0.003 6 6.501 6 2.581 5 4.926
92. 7 5.100 7 0.882 6 7.356 6 3.409 5 5.698
93. 7 6.006 7 1.760 6 8.211 6 4.238 5 6.472
94. 7 6.912 7 2.640 6 9.068 6 5.068 5 7.246
95. 7 7.818 7 3.520 6 9.925 6 5.898 5 8.022
96. 7 8.725 7 4.401 7 0.783 6 6.730 5 8.799
97. 7 9.633 7 5.282 7 1.642 6 7.562 5 9.577
98. 8 0.541 7 6.164 7 2.501 6 8.396 6 0.356
99. 8 1.449 7 7.046 7 3.361 6 9.230 6 1.137
100. 8 2.358 7 7.929 7 4.222 7 0.065 6 1.918